https://eprint.iacr.org/2024/1399

 

A Note on Ligero and Logarithmic Randomness

We revisit the Ligero proximity test, and its logarithmic randomness variant, in the framework of [EA23] and show a simple proof that improves the soundness error of the original logarithmic randomness construction of [DP23] by a factor of two. This note w

eprint.iacr.org

 

https://infossm.github.io/blog/2024/09/03/ProximityLogUpdate/

 

New Updates on Proximity Testing with Logarithmic Randomness

소개 이전 글에서, “Proximity Testing with Logarithmic Randomness”라는 논문을 소개했습니다. 이 논문을 읽은 당시에 제가 논문에 있었던 증명의 작은 오류를 찾아 이를 수정하는데 기여하기도 했으며,

infossm.github.io

 

 

https://infossm.github.io/blog/2024/08/27/Polymath/

 

Polymath: Groth16 is Not The Limit

소개 ZKP의 성능을 측정하는 요소에는 여러 가지가 있습니다. Prover와 Verifier의 입장에서 생각해보면, 가장 중요한 것은 아무래도 Prover가 proof를 생성하는데 걸리는 시간 및 리소스 Verifier가 proof를

infossm.github.io

 

 

 

https://hackmd.io/UFT-5jfPSBS7rxKHTx6clg

 

Decoding Reed-Solomon Codes - HackMD

   owned this note    owned this note       Published Linked with GitHub # Decoding Reed-Solomon Codes When we discuss Reed-Solomon Codes or other codes in general in ZKPs, the main ingredient is really about proximity and their testing. For ex

hackmd.io

 

https://hackmd.io/262GbvpNR4W2zxzJj36JqQ

 

STIR: Reed-Solomon Proximity Testing with Fewer Queries - HackMD

   owned this note    owned this note       Published Linked with GitHub --- layout: post title: "STIR: Reed-Solomon Proximity Testing with Fewer Queries" date: 2024-07-26 author: rkm0959 --- # 소개 이 글은 https://eprint.iacr.org/2024/390

hackmd.io

 

'Cryptography' 카테고리의 다른 글

Polymath: Groth16 is Not The Limit  (0) 2024.09.11
Decoding Reed-Solomon Codes  (0) 2024.08.03
Minimizing Foreign Arithmetic in ZKP Circuits  (0) 2024.06.11
1/8-1/10: Fixing the Proof of [DP23]  (0) 2024.01.15
1/12-1/14: MPC Fundamentals  (0) 2024.01.15

https://infossm.github.io/blog/2024/05/26/ForeignArithmeticZKP/

 

Minimizing Foreign Arithmetic in ZKP Circuits

https://eprint.iacr.org/2024/265.pdf 논문에 대해 다룹니다. 소개 ZKP를 사용하는 과정에서 가장 핵심적인 부분은 결국 $\mathbb{F}_p$ 위의 기본적인 연산들을 통해서 프로젝트 스펙에서 필요로 하는 constraint

infossm.github.io

 

https://hackmd.io/qb-NrfZ7SgWMvPGNF4xPxw

 

1/8-1/10: Fixing the Proof of [DP23] - HackMD

   owned this note    owned this note       Published Linked with GitHub # 1/8-1/10: Fixing the Proof of [[DP23]](https://eprint.iacr.org/2023/630.pdf) Continued from https://hackmd.io/c2eTRG3PSLeverwHTMkNDQ A similar approach is now integrated

hackmd.io

https://twitter.com/rkm0959/status/1746723799012442565

 

X의 rkm0959 | KALOS님(@rkm0959)

Here's something I've been working on the past week: finding & assisting in fixing a flaw in the extractability proof in https://t.co/BvfWzoqlJu - now fixed on eprint. discussed with @benediamond on this one, was a very fun experience. we auditing papers n

twitter.com

https://twitter.com/benediamond/status/1746724679706956213

 

X의 Ben Diamond님(@benediamond)

was a pleasure working through Merkle-extraction technicalities with @rkm0959, who is very astute. fixed version now live. the gap in our old proof also affects Brakedown 😅 @SuccinctJT

twitter.com

 

https://hackmd.io/gwQ-RYURT8G1MeE5g-sbPw

 

1/12: MPC Definitions / Problems Collection - HackMD

   owned this note    owned this note       Published Linked with GitHub # 1/12: MPC Definitions / Problems Collection - chapter 23 of https://toc.cryptobook.us/book.pdf - the book https://www.cs.virginia.edu/~evans/pragmaticmpc/pragmaticmpc.pd

hackmd.io

https://hackmd.io/b__SmbY8TESHKGOM4Hwo5Q

 

1/13: Beaver’s Protocol - HackMD

   owned this note    owned this note       Published Linked with GitHub # 1/13: Beaver's Protocol - Chapter 23.2 of https://toc.cryptobook.us/book.pdf ## The Big Idea Consider that we want to deal with $$(y_1, \cdots, y_m) = f(x_1, \cdots, x_n

hackmd.io

https://hackmd.io/1_LFw9IORhOsJsZLjNEkiA

 

1/14: Garbled Circuits - HackMD

   owned this note    owned this note       Published Linked with GitHub # 1/14: Garbled Circuits - Chapter 23.3 of https://toc.cryptobook.us/book.pdf - Chapter 3.1 of https://www.cs.virginia.edu/~evans/pragmaticmpc/pragmaticmpc.pdf - https://i

hackmd.io